Some congruences for the Bell polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Inequalities of the Bell Polynomials

In the paper, the author (1) presents an explicit formula and its inversion formula for higher order derivatives of generating functions of the Bell polynomials, with the help of the Faà di Bruno formula, properties of the Bell polynomials of the second kind, and the inversion theorem for the Stirling numbers of the first and second kinds; (2) recovers an explicit formula and its inversion form...

متن کامل

Some combinatorial formulas for the partial r-Bell polynomials

The partial r-Bell polynomials generalize the classical partial Bell polynomials (coinciding with them when r = 0) by assigning a possibly different set of weights to the blocks containing the r smallest elements of a partition no two of which are allowed to belong to the same block. In this paper, we study the partial r-Bell polynomials from a combinatorial standpoint and derive several new fo...

متن کامل

Some Identities for a Sequence of Unnamed Polynomials Connected with the Bell Polynomials

In the paper, using two inversion theorems for the Stirling numbers and binomial coefficients, employing properties of the Bell polynomials of the second kind, and utilizing a higher order derivative formula for the ratio of two differentiable functions, the authors present two explicit formulas, a determinantal expression, and a recursive relation for a sequence of unnamed polynomials, derive ...

متن کامل

Congruences involving Bernoulli polynomials

Let {Bn(x)} be the Bernoulli polynomials. In the paper we establish some congruences for Bj(x) (mod p n), where p is an odd prime and x is a rational p-integer. Such congruences are concerned with the properties of p-regular functions, the congruences for h(−sp) (mod p) (s = 3, 5, 8, 12) and the sum P k≡r (mod m) p k , where h(d) is the class number of the quadratic field Q(d) of discriminant d...

متن کامل

Congruences concerning Legendre Polynomials

Let p be an odd prime. In the paper, by using the properties of Legendre polynomials we prove some congruences for È p−1 2 k=0 2k k ¡ 2 m −k (mod p 2). In particular, we confirm several conjectures of Z.W. Sun. We also pose 13 conjectures on supercongruences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1961

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1961.11.1215